Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conserved Daily Transcriptional Programs in Carica papaya.

Identifieur interne : 003956 ( Main/Exploration ); précédent : 003955; suivant : 003957

Conserved Daily Transcriptional Programs in Carica papaya.

Auteurs : Anna Zdepski ; Wenqin Wang ; Henry D. Priest ; Faraz Ali ; Maqsudul Alam ; Todd C. Mockler ; Todd P. Michael

Source :

RBID : pubmed:20671772

Abstract

Most organisms have internal circadian clocks that mediate responses to daily environmental changes in order to synchronize biological functions to the correct times of the day. Previous studies have focused on plants found in temperate and sub-tropical climates, and little is known about the circadian transcriptional networks of plants that typically grow under conditions with relatively constant day lengths and temperatures over the year. In this study we conducted a genomic and computational analysis of the circadian biology of Carica papaya, a tropical tree. We found that predicted papaya circadian clock genes cycle with the same phase as Arabidopsis genes. The patterns of time-of-day overrepresentation of circadian-associated promoter elements were nearly identical across papaya, Arabidopsis, rice, and poplar. Evolution of promoter structure predicts the observed morning- and evening-specific expression profiles of the papaya PRR5 paralogs. The strong conservation of previously identified circadian transcriptional networks in papaya, despite its tropical habitat and distinct life-style, suggest that circadian timing has played a major role in the evolution of plant genomes, consistent with the selective pressure of anticipating daily environmental changes. Further studies could exploit this conservation to elucidate general design principles that will facilitate engineering plant growth pathways for specific environments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12042-008-9020-3) contains supplementary material, which is available to authorized users.

DOI: 10.1007/s12042-008-9020-3
PubMed: 20671772
PubMed Central: PMC2890329


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conserved Daily Transcriptional Programs in Carica papaya.</title>
<author>
<name sortKey="Zdepski, Anna" sort="Zdepski, Anna" uniqKey="Zdepski A" first="Anna" last="Zdepski">Anna Zdepski</name>
</author>
<author>
<name sortKey="Wang, Wenqin" sort="Wang, Wenqin" uniqKey="Wang W" first="Wenqin" last="Wang">Wenqin Wang</name>
</author>
<author>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
</author>
<author>
<name sortKey="Ali, Faraz" sort="Ali, Faraz" uniqKey="Ali F" first="Faraz" last="Ali">Faraz Ali</name>
</author>
<author>
<name sortKey="Alam, Maqsudul" sort="Alam, Maqsudul" uniqKey="Alam M" first="Maqsudul" last="Alam">Maqsudul Alam</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
<author>
<name sortKey="Michael, Todd P" sort="Michael, Todd P" uniqKey="Michael T" first="Todd P" last="Michael">Todd P. Michael</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:20671772</idno>
<idno type="pmid">20671772</idno>
<idno type="doi">10.1007/s12042-008-9020-3</idno>
<idno type="pmc">PMC2890329</idno>
<idno type="wicri:Area/Main/Corpus">003730</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003730</idno>
<idno type="wicri:Area/Main/Curation">003730</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003730</idno>
<idno type="wicri:Area/Main/Exploration">003730</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conserved Daily Transcriptional Programs in Carica papaya.</title>
<author>
<name sortKey="Zdepski, Anna" sort="Zdepski, Anna" uniqKey="Zdepski A" first="Anna" last="Zdepski">Anna Zdepski</name>
</author>
<author>
<name sortKey="Wang, Wenqin" sort="Wang, Wenqin" uniqKey="Wang W" first="Wenqin" last="Wang">Wenqin Wang</name>
</author>
<author>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
</author>
<author>
<name sortKey="Ali, Faraz" sort="Ali, Faraz" uniqKey="Ali F" first="Faraz" last="Ali">Faraz Ali</name>
</author>
<author>
<name sortKey="Alam, Maqsudul" sort="Alam, Maqsudul" uniqKey="Alam M" first="Maqsudul" last="Alam">Maqsudul Alam</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
<author>
<name sortKey="Michael, Todd P" sort="Michael, Todd P" uniqKey="Michael T" first="Todd P" last="Michael">Todd P. Michael</name>
</author>
</analytic>
<series>
<title level="j">Tropical plant biology</title>
<idno type="ISSN">1935-9756</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most organisms have internal circadian clocks that mediate responses to daily environmental changes in order to synchronize biological functions to the correct times of the day. Previous studies have focused on plants found in temperate and sub-tropical climates, and little is known about the circadian transcriptional networks of plants that typically grow under conditions with relatively constant day lengths and temperatures over the year. In this study we conducted a genomic and computational analysis of the circadian biology of Carica papaya, a tropical tree. We found that predicted papaya circadian clock genes cycle with the same phase as Arabidopsis genes. The patterns of time-of-day overrepresentation of circadian-associated promoter elements were nearly identical across papaya, Arabidopsis, rice, and poplar. Evolution of promoter structure predicts the observed morning- and evening-specific expression profiles of the papaya PRR5 paralogs. The strong conservation of previously identified circadian transcriptional networks in papaya, despite its tropical habitat and distinct life-style, suggest that circadian timing has played a major role in the evolution of plant genomes, consistent with the selective pressure of anticipating daily environmental changes. Further studies could exploit this conservation to elucidate general design principles that will facilitate engineering plant growth pathways for specific environments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12042-008-9020-3) contains supplementary material, which is available to authorized users.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">20671772</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1935-9756</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1</Volume>
<Issue>3-4</Issue>
<PubDate>
<Year>2008</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Tropical plant biology</Title>
<ISOAbbreviation>Trop Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Conserved Daily Transcriptional Programs in Carica papaya.</ArticleTitle>
<Pagination>
<MedlinePgn>236-245</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Most organisms have internal circadian clocks that mediate responses to daily environmental changes in order to synchronize biological functions to the correct times of the day. Previous studies have focused on plants found in temperate and sub-tropical climates, and little is known about the circadian transcriptional networks of plants that typically grow under conditions with relatively constant day lengths and temperatures over the year. In this study we conducted a genomic and computational analysis of the circadian biology of Carica papaya, a tropical tree. We found that predicted papaya circadian clock genes cycle with the same phase as Arabidopsis genes. The patterns of time-of-day overrepresentation of circadian-associated promoter elements were nearly identical across papaya, Arabidopsis, rice, and poplar. Evolution of promoter structure predicts the observed morning- and evening-specific expression profiles of the papaya PRR5 paralogs. The strong conservation of previously identified circadian transcriptional networks in papaya, despite its tropical habitat and distinct life-style, suggest that circadian timing has played a major role in the evolution of plant genomes, consistent with the selective pressure of anticipating daily environmental changes. Further studies could exploit this conservation to elucidate general design principles that will facilitate engineering plant growth pathways for specific environments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12042-008-9020-3) contains supplementary material, which is available to authorized users.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zdepski</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wenqin</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Priest</LastName>
<ForeName>Henry D</ForeName>
<Initials>HD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Faraz</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alam</LastName>
<ForeName>Maqsudul</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mockler</LastName>
<ForeName>Todd C</ForeName>
<Initials>TC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Michael</LastName>
<ForeName>Todd P</ForeName>
<Initials>TP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Trop Plant Biol</MedlineTA>
<NlmUniqueID>101475314</NlmUniqueID>
<ISSNLinking>1935-9756</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>11</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20671772</ArticleId>
<ArticleId IdType="doi">10.1007/s12042-008-9020-3</ArticleId>
<ArticleId IdType="pmc">PMC2890329</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2006;2:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17102804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2006;2:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17102803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 10;433(7026):627-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1926-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):969-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Apr 28;101(3):319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10847686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):792-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jan 11;15(1):47-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jun 26;93(7):1219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 7;302(5647):1049-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14605371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):639-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 20;449(7160):356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Aug 4;289(5480):768-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10926537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2007;72:353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3257-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):648-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10387-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jun 26;93(7):1207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Feb;4(2):e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2005 Feb;69(2):410-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15725670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(8):R130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 11;310(5750):1031-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12759-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 3;293(5531):880-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11486091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Apr 1;22(7):918-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Nov;44(11):1229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2516-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 10;102(19):7037-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):548-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17877705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6878-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 22;283(34):23073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 22;309(5734):630-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):627-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Feb 15;166(3):278-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jul 30;3(7):e2798</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 May;47(5):601-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524874</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Alam, Maqsudul" sort="Alam, Maqsudul" uniqKey="Alam M" first="Maqsudul" last="Alam">Maqsudul Alam</name>
<name sortKey="Ali, Faraz" sort="Ali, Faraz" uniqKey="Ali F" first="Faraz" last="Ali">Faraz Ali</name>
<name sortKey="Michael, Todd P" sort="Michael, Todd P" uniqKey="Michael T" first="Todd P" last="Michael">Todd P. Michael</name>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
<name sortKey="Wang, Wenqin" sort="Wang, Wenqin" uniqKey="Wang W" first="Wenqin" last="Wang">Wenqin Wang</name>
<name sortKey="Zdepski, Anna" sort="Zdepski, Anna" uniqKey="Zdepski A" first="Anna" last="Zdepski">Anna Zdepski</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003956 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003956 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20671772
   |texte=   Conserved Daily Transcriptional Programs in Carica papaya.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20671772" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020